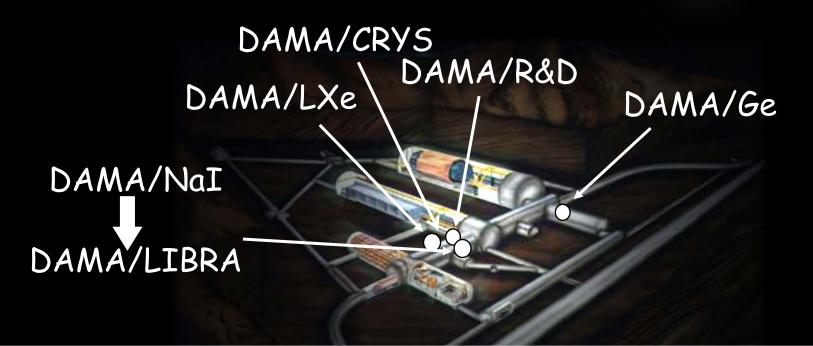


Risultati recenti e prospettive sullo studio del doppio decadimento beta con cristalli scintillatoti (DAMA set-up)

Trento, 11-15 Settembre 2017

F., Caracciolo V., Cerulli R., Chernyak D.M., Danevich F.A., Incicchitti A.,

Kasperovych D.V., Kobychev V.V., Konovalov S.I., Laubenstein M., Mokina V.M., Poda D.V., Polischuk O.G., Shlegel V.N., Tretyak V.I., Umatov V.I., Zarytskyy M.M.


DAMA Experimental Activities

DAMA Collaboration (spokesperson: prof. R. Bernabei):

Roma2, Roma1, LNGS-INFN, IHEP/Beijing

- + by-products and small scale expts.: INR-Kiev and others
- + neutron meas.: ENEA-Frascati e ENEA-Casaccia
- + in some studies on ββ decays (DST-MAE project): IIT Kharagpur/Ropar, India

DAMA: an observatory for rare processes @LNGS

Strengths of $\beta\beta$ experiments by ULB crystal scintillators

- Well known technology
- High duty cycle
- Large mass possible
- Enrichment possible in many cases
- "Ecological clean" set-up; no safety problems
- Cheaper than other considered technique
- Relatively small underground space needed
- High radiopurity by selections, chem./phys. purifications, protocols reachable
- Well controlled operational condition feasible
- Neither re-purification procedures nor cooling down/warming up (reproducibility, stability, ...)
- Possibility of high light response in many cases
- Effective routine calibrations feasible in the same conditions as production runs
- Absence of microphonic noise
- Possibility of application both in passive and active source approaches as well as with coincidence/anticoincidence techniques
- Many isotopes and decay modes explorable
- Etc.

Esempi di isotopi utili per l'investigazione di modi di decadimento doppio beta impiegando cristalli scintillatori con la tecnica della sorgente attiva

Isotops	Nat. Ab. (%)	Q (keV)	Decay Mode	Scintillator
⁶⁴ Zn	8.63	1095.7	εβ+,2ε	ZnWO4, CdWO4
⁷⁰ Zn	0.62	998.5	2β ⁻	ZnWO ₄ , CdWO ₄
^{180}W	0.12	144	2ε	ZnWO ₄ , CdWO ₄ , PbWO ₄
^{186}W	28.43	489.9	2β-	ZnWO ₄ , CdWO ₄ , PbWO ₄
¹⁰⁶ Cd	1.25	2771	$2\beta^+$, $\epsilon\beta^+$, 2ϵ	¹⁰⁶ CdWO ₄
¹⁰⁸ Cd	0.89	269	2ε	CdWO ₄
¹¹⁴ Cd	28.73	536.8	2β-	$CdWO_4$
¹¹⁶ Cd	7.49	2805	2β ⁻	¹¹⁶ CdWO ₄
⁴⁰ Ca	96.941	193.78	2ε	CaF ₂ , CaMoO ₄
⁴⁶ Ca	0.004	990.4	2β-	CaF ₂ , CaMoO ₄
⁴⁸ Ca	0.187	4272	2β-	CaF ₂ , CaMoO ₄
¹³⁶ Ce	0.185	2419	2β+, εβ+	CeCl ₃ , CeF ₃ , CeBr ₃
¹³⁸ Ce	0.251	693	2ε	CeCl ₃ , CeF ₃ , CeBr ₃
¹⁴² Ce	11.114	1416.9	2β⁻	CeCl ₃ , CeF ₃ , CeBr ₃
¹³⁰ Ba	0.106	2611	$2\beta^+$, $\epsilon\beta^+$, 2ϵ	BaF2, BaCl2(Eu), Bal2(Eu)
⁹² Mo	14.84	1649	εβ+,2ε	PbMoO ₄ , LiMoO ₄ , CaMoO ₄
¹⁰⁰ Mo	9.63	3034	2β-	PbMoO ₄ , LiMoO ₄ , CaMoO ₄
⁸⁴ Sr	0.56	1786.8	ϵeta^+	SrCl ₂ , Srl ₂ (Eu)

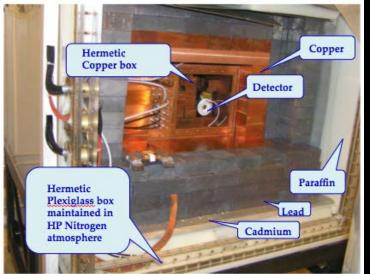
DAMA/Ge and LNGS STELLA facility - <u>Some main previous</u> results

several RDs on low background PMTs

- qualification of many materials
- meas. on $\text{Li}_6\text{Eu}(\text{BO}_3)_3$ (NIMA572(2007)734)
- $\beta\beta$ decay in ¹⁰⁰Mo with the 4π low-bckg HPGe facility of LNGS (NPA846(2010)143)
- search for ⁷Li solar axions (NPA806(2008)388, PLB711(2012)41)

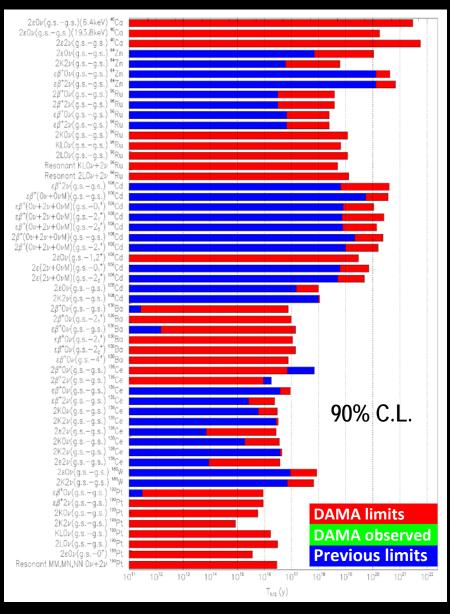
Comunicazione

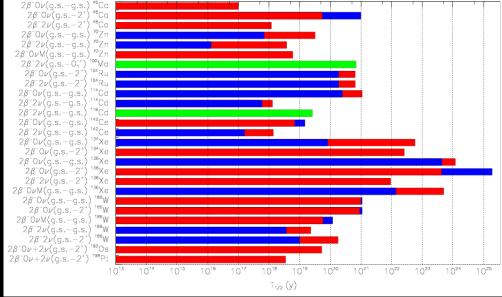
di: F. Cappella


- meas. with a Li_2MoO_4 (NIMA607(2009)573)
- $\beta\beta$ decay of ¹³⁶Ce and ¹³⁸Ce (NPA824(2009)101)
- CdWO₄ and ZnWO₄ radiopurity studies (NIMA626-627(2011)31, NIMA615(2010)301)
- First observation of α decay of ¹⁹⁰Pt to the first excited level (137.2 keV) of ¹⁸⁶Os (PRC83(2011)034603)
- ββ decay in ¹⁹⁰Pt and ¹⁹⁸Pt (EPJA47(2011)91)
- $\beta\beta$ decay of ¹⁵⁶Dy ¹⁵⁸Dy (NPA859(2011)126)
- Contaminations of SrI₂(Eu) (NIMA670(2012)10)
- Radioactive contamination of ⁷LiI(Eu) (NIMA704(2013)40)
- $\beta\beta$ decay of ⁹⁶Ru and ¹⁰⁴Ru (EPJA42(2009)171, PRC87(2013)034607)
- First search for rare decays of Os (EPJA49(2013)24)
- Search for double beta decay of ¹³⁶Ce and ¹³⁸Ce (Nucl.Phys. A930 (2014) 195-208)
- Double beta decay in ¹¹²Sn and ¹²⁴Sn (NIMA797 (2015) 130-137)

DAMA R&D - Some main previous results:

Materiale	$^{238}U \text{ (ppb)}$	232 Th (ppb)	^{nat} K (ppm)
Cu	< 0.5	< 1	< 0.6
Pb boliden	< 8	< 0.03	< 0.06
Pb boliden2	< 3.6	< 0.027	< 0.06
Polish Pb	< 7.4	< 0.042	< 0.03
Polietilene	< 0.3	< 0.7	< 2
Plexiglass	< 0.64	< 27.2	< 3.3


- scintillators developments: radio-purification, enrichment, optical features, etc.
- exploiting the potentiality of the low background scintillation technique to investigate rare processes with high sensitivity
- realization of pilot experiments


 $CaF_2(Eu)$, CeF_3 , BaF_2 , $CdWO_4$, $^{106}CdWO_4$, $^{116}CdWO_4$, $ZnWO_4$, $LaCl_3(Ce)$, $LiEu(BO_3)_3$, LiF(W), $CeCl_3$, Li_2MoO_4 , $Srl_2(Eu)$, etc.

AP7(1997)73, N.Cim.A110(1997)189, NPB563(1999)97, AP10(1999)115, NPA705(2002)29, NIMA498(2003)352, NIMA525(2004)535, NIMA555(2005)270, UJP51(2006)1037, NPA789(2007)15, PRC76(2007)064603, PLB658(2008)193, EPJA36(2008)167, NPA824(2009)101, NPA826(2009)256, JPG:NPP38(2011)115107, JPG: NPP38(2011)015103, JINST6(2011)P08011, PRC85(2012)044610, EPJC73(2013)2276, EPJA50(2014)134, PS90(2015)085301

Summary of searches for $\beta\beta$ decay modes in various isotopes (partial list)

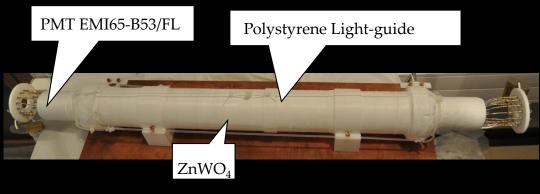
ARMONIA: New observation of $2\nu2\beta^{-100}\text{Mo} \rightarrow^{100}\text{Ru}$ (g.s. \rightarrow 0₁⁺) decay NPA846 (2010)143 AURORA: New observation of $2\nu2\beta^{-116}\text{Cd}$ decay J.Phys.:Conf.Ser.718(2016)062009

- Many competitive limits obtained on lifetime of 2β⁺, εβ⁺ and 2ε processes (⁴⁰Ca, ⁶⁴Zn, ⁹⁶Ru, ¹⁰⁶Cd, ¹⁰⁸Cd, ¹³⁰Ba, ¹³⁶Ce, ¹³⁸Ce, ¹⁸⁰W, ¹⁹⁰Pt, ¹⁸⁴Os, ¹⁵⁶Dy, ¹⁵⁸Dy, ...).
- First searches for resonant $0v2\varepsilon$ decays in some isotopes

In the following present STATUS and PERSPECTIVES on:

- ✓ ZnWO₄ crystal scintillators to search for 2β in Zn and W isotopes
- √ 106CdWO₄/116CdWO₄ crystal scintillators to search for 2β in 106Cd/116Cd
- ✓ Improvement of crystal radio-purity by recrystallization technique
- ✓ Srl₂(Eu) crystal scintillator for low-level counting experiments

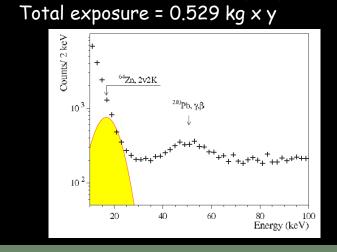
ZnWO₄ crystal scintillators


Development of low background ZnWO₄ crystal scintillators with large volume and high scintillation properties is important to investigate double beta decay modes in Zn and W isotopes with source=detector approach

Transition	Energy release $(Q_{\beta\beta})$ (keV) [26]	Isotopic abundance (%) [27]	Decay channels	Number of mother nuclei in 100 g of ZnWO ₄ crystal
$^{64}\text{Zn} \rightarrow ^{64}\text{Ni}$	1095.7(0.7)	49.17(75)	$2\varepsilon, \varepsilon\beta^+$ $2\beta^ 2\varepsilon$ $2\beta^-$	9.45×10^{22}
$^{70}\text{Zn} \rightarrow ^{70}\text{Ge}$	998.5(2.2)	0.61(10)		1.17×10^{21}
$^{180}\text{W} \rightarrow ^{180}\text{Hf}$	144(4)	0.12(1)		2.31×10^{20}
$^{186}\text{W} \rightarrow ^{186}\text{Os}$	489.9(1.4)	28.43(19)		5.47×10^{22}

PLB658(2008)193 NPA826(2009)256 NIMA626-627(2011)31 JP38(2011)115107 EPJC73 1(2013) 2276 PS90 8(2015)085301 NIMA833 (2016) 77-81

- Various detectors with mass 0.1-0.7 kg realized by exploiting different materials and techniques
- Inside a cavity (filled up with high-pure silicon oil) ϕ 47 x 59 mm in central part of a polystyrene light-guide 66 mm in diameter and 312 mm in length.


Final results on the present stage of investigation of $\beta\beta$ decay modes in Zn and W isotopes with low background ZnWO₄

GNPP 38 (2011) 115107

Improved (up to 2 orders of magnitude) $T_{1/2}$ limits on $\beta\beta$ decay modes of 64 Zn, 70 Zn, 180 W and 186 W:

now at level of $10^{18} - 10^{21} \, yr$

 \rightarrow up to now only 5 nuclides (40 Ca, 78 Kr, 112 Sn, 120 Te and 106 Cd) over 34 candidates to 2ϵ , $\epsilon\beta^+$, $2\beta^+$ processes have been studied at similar level of sensitivity in direct search experiments

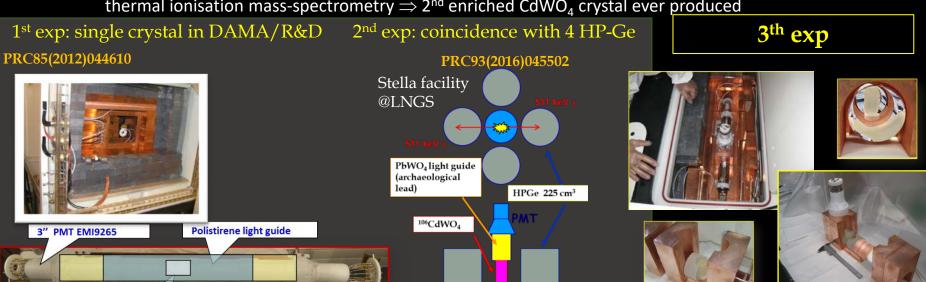
- 1. A possible positive hint of the $(2n+0n)\epsilon\beta^+$ decay in 64 Zn with $T_{1/2}$ = $(1.1\pm0.9)\times10^{19}$ yr [Bikit et al., Appl. Radiat. Isot. 46(1995)455] excluded
- 2. the $0v2\beta$ capture in ¹⁸⁰W is of particular interest because of possible resonant process;
- 3. the rare α decay of the ¹⁸⁰W with T_{1/2} = (1.3^{+0.6}_{-0.5}) × 10¹⁸ yr observed and new limit on the T_{1/2} of the α transition of the ¹⁸³W to the metastable level 1/2⁻ at 375 keV of ¹⁷⁹Hf has been set: T_{1/2} = 6.7 × 10²⁰ yr.

ZnWO₄ - Work in Progress...

- New 4 crystal scintillators in the DAMA/R&D in data taking:
 - radioactive contamination and scintillation performances
 - study of double beta decay modes in Zn and W isotopes

Development of Detectors with Anisotropic Response

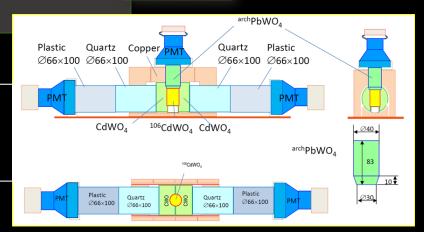
For Dark Matter Search in Directionality Approach are in progress

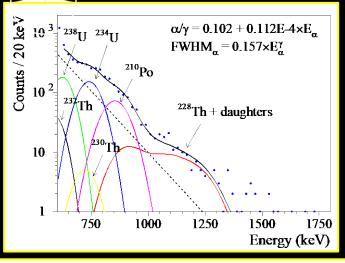

- Cryostat for low temperature measurement with scintillation, testing in progress
- detectors realized
- Lowering the energy threshold
 - Measurements of anisotropy at low energy with Neutron Generator in progress at Casaccia ENEA lab
- Development of electronics

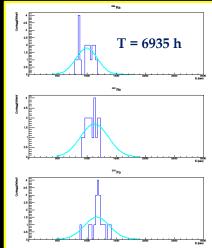
Eur. Phys. J. C 73 (2013) 2276

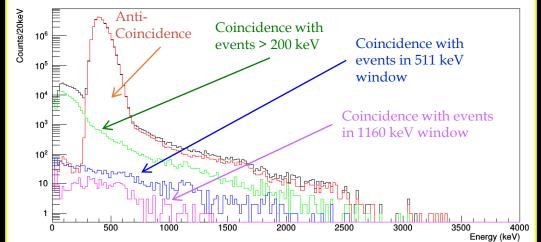
The used 106CdWO₄ crystal scintillator

- Samples of cadmium were purified by vacuum distillation (Institute of Physics and Technology, Kharkiv) and the Cadmium tungstate compounds were synthesized from solutions
- Crystal boule was grown by the low-thermal-gradient Czochralski technique (NIIC Novosibirsk) (initial powder 265 g)


• Crystal scintillator (216 g mass), 66.4% enrichment in 106 Cd (2.66×10²³ nuclei of 106 Cd) measured by thermal ionisation mass-spectrometry \Rightarrow 2nd enriched CdWO₄ crystal ever produced


106CdWO₄ in (anti)coincidence with two large
 CdWO₄ scintillators mounted in DAMA/CRYS set-up
 @ LNGS


106CdWO


Quartz light guide

New ¹⁰⁶CdWO4 experiment in DAMA/CRYS set-up Preliminary

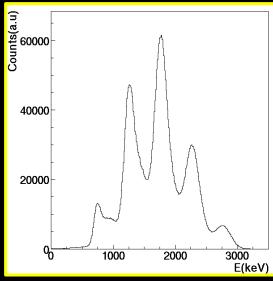
The energy spectra accumulated over **6935 h** by the ¹⁰⁶CdWO₄ detector:

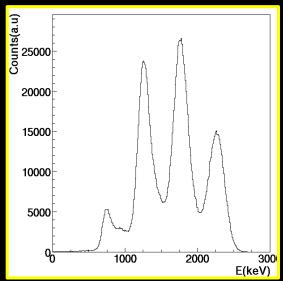
- in anticoincidence with the ^{nat}CdWO₄ detectors
- in coincidence with event(s) in at least one of the ^{nat}CdWO₄ detectors with energy:
 - E > 200 keV
 - E in energy window around 511 keV
 - E in energy window around 1160 keV

The arrival time, the energy and the pulse shape of each event were used to select the fast decay chain in the 228 Th sub-chain of the 232 Th family in 106 CdWO₄ crystal:

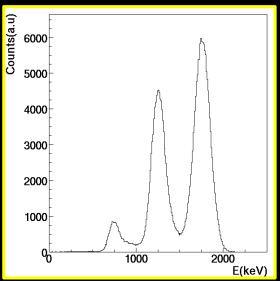
²²⁴Ra (
$$Q = 5.789$$
 MeV, $T_{1/2} = 3.66$ d)
↓
²²⁰Rn ($Q = 6.405$ MeV, $T_{1/2} = 55.6$ s)
↓
²¹⁶Po ($Q = 6.906$ MeV, $T_{1/2} = 0.145$ s)
↓
²¹²Pb

- \Rightarrow Activity of ²²⁸Th: **5(1)** μ Bq/kg
- \Rightarrow Estimation of α/γ light ratio
- \Rightarrow Estimation of α energy resolution


Chain	Nuclide	a (mBq/kg)	
²³² Th	²³² Th	< 0.07	
	²²⁸ Th+subch.	< 0.02	
^{238}U	238U	< 0.6	
	²³⁴ Th	< 0.6	
	²³⁰ Th	< 0.4	
	²¹⁰ Po	< 0.2	


Estimation of sensitivity

Expected signal for 106 Cd $0v2\beta^+(0^+\rightarrow 0^+)$:


Spectrum of ¹⁰⁶CdWO₄ detector

Spectrum of $^{106}\text{CdWO}_4$ detector when one of the two CdWO_4 detectors detects γ of 511 keV ($\pm 2\sigma$)

Spectrum of 106 CdWO $_4$ detector when both the CdWO $_4$ detectors detect γ of 511 keV ($\pm 2\sigma$)

Sensitivity after 1yr in the hypothesis of about 30 background counts in [0.-3.] MeV:

0ν εβ⁺ (g.s.):

 $T_{1/2} \approx 5 \times 10^{21} \text{ yr}$

 $2v 2\beta^+$ (g.s.):

 $T_{1/2} \approx 2 \times 10^{21} \text{ yr}$

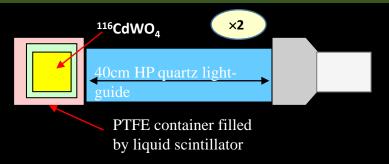
In the region of theoretical predictions: $T_{1/2} \sim 10^{20}$ – 10^{22} yr

Note that, up to now, 2v mode of the $2\beta^+$ processes has not been detected unambiguously: there are only indications for 130 Ba and 78 Kr

The AURORA experiment in the DAMA/R&D set-up:

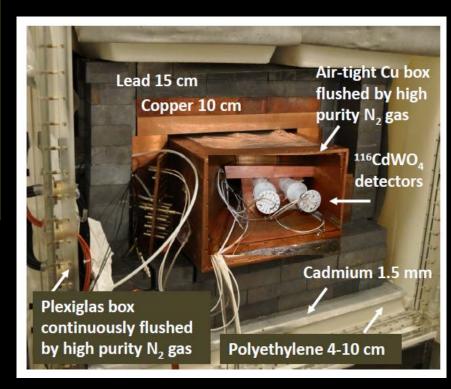
Investigation of 2 β decay of 116 Cd with enriched 116 CdWO $_4$

crystal scintillators


¹¹⁶Cd: one of the best isotope for 0v2β decay search:

- $Q_{66} = 2813.44(13) \text{ keV}$
- $\delta = 7.49(18)\%$
- possible high isotopic enrichment
- promising theoretical calculation

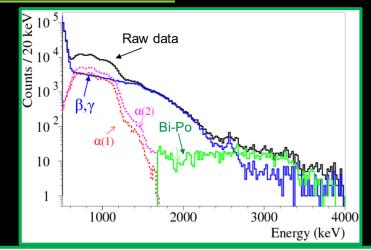
¹¹⁶CdWO₄ crystal scintillators

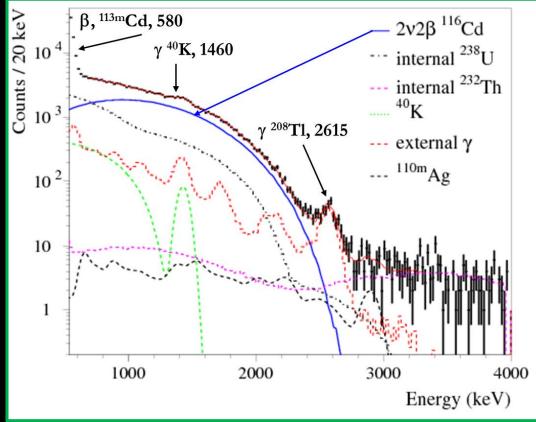

Grown by the low-thermal-gradient Czochralski technique after deep purification of ¹¹⁶Cd and W;

- + annealing to improve the optical transmission curve
- ✓ Good optical and scintillation properties
- ✓ ¹¹⁶CdWO₄ crystals enriched at 82%
- Active source approach (high detection efficiency)
- ✓ Low levels of internal contamination in (U, Th, K)
- \checkmark α/β discrimination capability

Two enriched ¹¹⁶CdWO₄ crystal scintillators (total mass: 1.162 kg, ¹¹⁶Cd @ 82%)

- ✓ Started in 2011
- ✓ Upgrade March 2014
- ✓ Total live time since 2014: 25037 h
- ✓ Background level at 2.7-2.9 MeV: 0.1 counts/keV/kg/yr

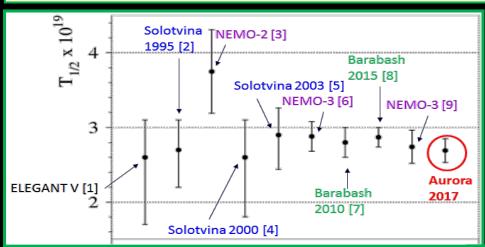



AURORA Experiment: Background Identification

Radioactive contaminations of ¹¹⁶CdWO₄ crystal scintillators

Chain	Nuclide	Activity mBq/kg
²³² Th	²³² Th	0.61(2)
	²²⁸ Th	0.022(3)
²³⁸ U	238U	0.59(7)
	²³⁴ Th	0.64(7)
	²³⁰ Th	0.11(2)
	²²⁶ Ra	≤ 0.01
	²¹⁰ Pb	0.6(1)
	⁴⁰ K	0.20(1)
	^{110m} Ag	<0.06

Total α activity = 2.27 mBq/kg

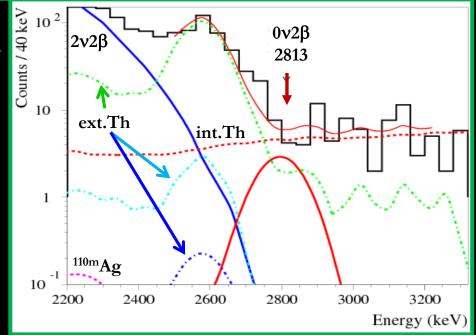


AURORA Experiment: Result for $2v2\beta$ Decay of ^{116}Cd & $T_{1/2}$ Limit on $0v2\beta$ Decay of ^{116}Cd

 $T_{1/2} = [2.69 \pm 0.02(\text{stat.}) \pm 0.14(\text{syst.})] \times 10^{19} \text{ yr}$ (the most accurate value up to date)

- [1] J. Phys. Soc. Japan 64(1995)339
- [2] Phys. Lett. B 344(1995)72
- [3] Z. Phys. C 72(1996)239
- [4] PRC 62(2000)045501
- [5] PRC 68(2003)035501
- [6] AIP Conf. Proc. 1572(2013)110
- [7] PRC 81(2010)035501
- [8] NPA 935(2015)52
- [9] PRD 95(2017)012007

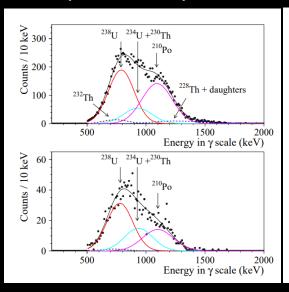
Fit in 2.5–3.2 MeV: -3.7 ± 10.6 counts

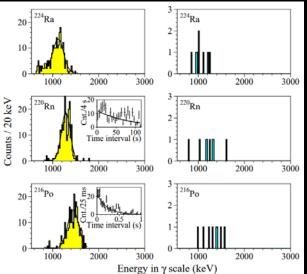

 $T_{1/2} > 2.4 \times 10^{23} \text{ yr } @ 90\% \text{ C.L.}$

Effective Majorana neutrino mass:

$$\langle m_{\rm v} \rangle < 1.1 - 1.6 \text{ eV } [1-4]$$

New improved limits on $T_{1/2}$ for $0v2\beta$ decay to excited levels of ¹¹⁶Sn in the range: (3.6–6.3)×10²² vr


- [1] T.R. Rodryguez et al., Phys.Rev.Lett. 105(2010)252503
- [2] F. Simkovic et al., Phys.Rev.C 87 (2013)045501
- [3] J. Hyvarinen et al., Phys.Rev.C 91 (2015)024613
- [4] J. Barea et al., Phys.Rev.C 91(2015)034304



Improvement of radiopurity of ¹¹⁶CdWO4 by recrystallization

A.S. Barabash et al., Nucl. Instr. Meth. A 833(2016)77

Re-crystallized by the low-thermal-gradient Czochralski technique in a platinum crucible

Crystal n.3 used (326 g mass)

60% of initial mass after recrystallization

Side surface made opaque by grinding paper to improve light collection

Radioactive contamination of the samples (before an after recrystallization) measured in the DAMA/CRYS setup @ LNGS

Chain	Nuclide (sub-chain)	Activity (mBq/kg)	
		Before recrystallization	After recrystallization
²³² Th	²³² Th ²²⁸ Th	0.13(7)	0.03(2)
²³⁸ U	²³⁸ U ²²⁶ Ra	0.10(1) 1.8(2) ≤0.1	0.010(3) 0.8(2) ≤0.015
	²³⁴ U+ ²³⁰ Th ²¹⁰ Po	0.6(2) 1.6(2)	0.4(1) 0.4(1)
Total α		4.44(4)	1.62(4)

- \geq 228Th reduced by a factor ~10 \Rightarrow 0.01 mBq/kg
- \triangleright α activity reduced by a factor $\sim 3 \implies 1.6 \text{ mBq/kg}$

main background component for ¹¹ 6Cd 0ν2β decay

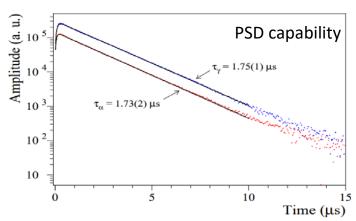
Feasibility Study for Low-Level Counting Experiment by Srl₂(Eu)

Crystal Scintillator

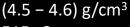
Features in literature

Density:

Melting point:


Index of refraction:

Wavelength of emission maximum:


Light yield:

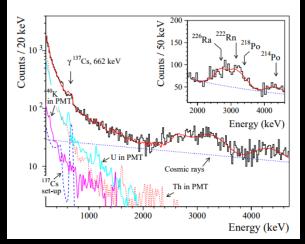
Energy resolution (FWHM) for 662 keV y:

Scintillation decay time at 300 K:

Process Decay Level of $T_{1/2}$ (yr) of decay modedaughter (keV) Present work [35, 36]nucleus (keV) $> 7.3 \times 10^{13}$ $\varepsilon \beta^+$ 511 $> 6.9 \times 10^{15}$ 0ν g.s. $\varepsilon \beta^+$ 2ν 2K1754 - 1762KL 0ν 1767 - 17752L 0ν 2^{+} 881.6 881.6 881.6 $> 3.1 \times 10^{16}$ 2^{+} 881.6

515 ∘C

1.85


429 - 436 nm

(68 - 120) photons/keV

(2.6 - 3.7)%

 $(0.6 - 2.4) \mu s$

- A single crystal of Srl₂ doped by 1.2% of Eu was grown in a quartz ampoule using the vertical Stockbarger method
- Studied radioactive contamination and scintillation property
- Applicability of $Srl_2(Eu)$ to the search for $\beta\beta$ decay of ⁸⁴Sr was demonstrated for the first time.
- New improved half-life limits were set on 2ε and $\varepsilon\beta^+$ decay in ⁸⁴Sr at level of $T_{1/2} \sim 10^{15} - 10^{16}$ yr.

Work in Progress....

- Radio-purity improvements
- Studying different crystal growing technique
- Growing large volume SrI₂(Eu) crystal scintillator to study its radioactive contamination and scintillation performances

19 <u>Conclusions</u>

- \checkmark Many and competitive results have been obtained in the search for ββ decay by the DAMA experimental set-ups at LNGS
- ✓ Continue efforts to develop new/improved crystal scintillators for low bckg physics
- \checkmark Experiments on 2 β decay of Zn and W isotopes running/under-improvement
- ✓ Experiments for development of crystal scintillators with anisotropic response for nuclear recoil in keVee region are in progress
- ✓ Experiments on 2 β decay of ¹⁰⁶Cd and ¹¹⁶Cd running/under-improvement
- ✓ Search for 2β processes in ¹¹⁶Cd with ¹¹⁶CdWO₄ (enriched to 82%) scintillation detectors (1.16 kg) just concluded in the DAMA/R&D set-up:
 - $T_{1/2}(2v2\beta) = [2.69 \pm 0.02(stat.) \pm 0.14(syst.)] \times 10^{19}$ yr (the most accurate value up to date)
 - $T_{1/2}(0v2\beta) \ge 2.4 \times 10^{23} \text{ yr } \Rightarrow \langle mv \rangle < (1.1 1.6) \text{ eV}$ (the best limit)
 - Internal ²²⁸Th (main bkgd) can be strongly reduced by re-crystallization
- ✓ Studies for the Improvement of crystal scintillators' radiopurity are in progress
- ✓ Feasibility Study for Low-Level Counting Experiment by Srl₂(Eu)Crystal Scintillator