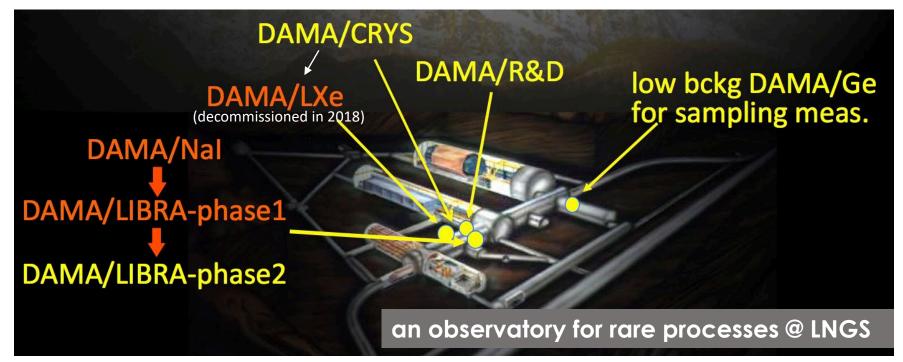
Short Summary of Ongoing Research Activities of the DAMA Collaboration at LNGS

Vincenzo Caracciolo


School of Mathematics, Physical and Natural Sciences

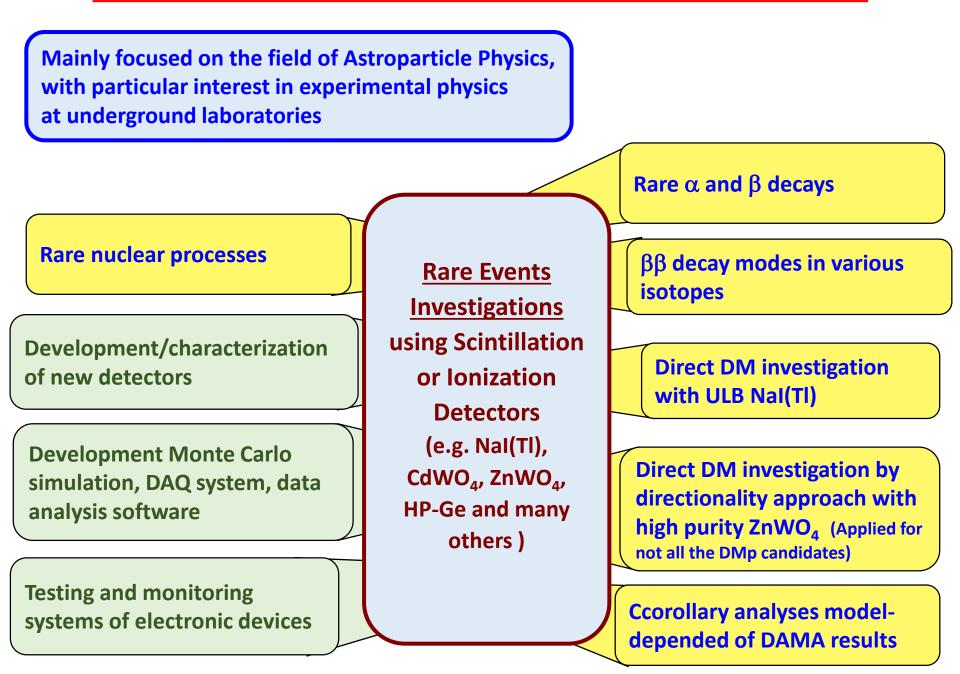
www.vincenzocaracciolo.it

DAMA Collaboration and Setups

Collaboration:

web site: http://people.roma2.infn.it/dama

Roma Tor Vergata, Roma La Sapienza, LNGS, IHEP/Beijing


+ by-products and small scale expts.: INR-Kiev + some Russian institutions,

Queen's University - Canada,

+ neutron meas.: ENEA-Frascati, ENEA-Casaccia

+ in some studies on $\beta\beta$ decays (DST-MAE and Inter-Universities project): IIT Kharagpur and Ropar, India

MAIN RESEARCH ACTIVITIES

SOME OF MOST RECENT STUDIES

Many competitive limits on lifetimes of $2\beta^+$, $\epsilon\beta^+$, 2ϵ and $2\beta^-$ processes • First searches for many $\beta\beta$ decay modes in several isotopes **Double Beta Decay** DAMA observed Whv? Partial List DAMA limits Legenda. Matrix elements Previous limits **Two-neutrino** Axial vector contribution 2β⁻0ν(g.s.-g.s.) ¹¹⁸Cd Nuclear model $2\beta^{-}2\nu(g.s.-g.s.)$ ¹¹⁸Cd Information for the 0vββ search $2\beta^{-}2\nu(q.s.-0_{1}^{+})$ ¹⁵⁰Nd $2\beta^{-}0\nu + 2\nu(g.s.-2^{+})^{170}$ Er Knowledge of the spectral shapes can use $2\beta^*0\nu(g.s.-g.s.)^{108}Cd$ to mitigate the background for $0\nu\beta\beta$ $2\beta^{+}2\nu(g.s.-g.s.)^{108}Cd$ studies $\epsilon \beta^* 0 \nu (g.s.-g.s.)$ ¹⁰⁸Cd $\epsilon \beta^+ 2\nu (g.s.-g.s.)$ ¹⁰⁶Cd EPJ A55 (2019) 201 **Recent research mainly** 2ε0ν(g.s.-g.s.) ¹⁰⁶Cd NP A990 (2019) 64 $2\epsilon 2\nu (g.s. - 2_2^+)^{108}Cd$ AIPC 2165 (2019) 020014 focused on the study of JP G45 (2018) 095101 Resonant 2K0v ¹⁰⁸Cd positive $\beta\beta$ decay modes UNI 4 (2018) 147 Resonant KL₁Ov ¹⁰⁸Cd Resonant KL20v ¹⁰⁶Cd **Neutrino-less** 2K2v(g.s.-2+) 144Sm $2\epsilon\beta^{+}2\nu(g.s.-g.s.)^{144}Sm$ Why? 2β^{-(2ν+0ν)(g,z−2+}) ¹⁴⁴Sm $2\varepsilon\beta^{+}(2\nu+0\nu)(q.s.-0^{+})^{154}Sm$

 $2\epsilon 2\nu (g.s. - 0^+)$ ¹⁶⁸Yb $2KO\nu(q.s, -0^+)^{168}Yb$

 $2\beta^{-}2\nu(g.s.-2^{+})^{-178}$ Yb $2\beta^{-}0\nu(g.s.-2^{+})^{176}Yb$

Violate the full lepton number and therefore provides a unique window into physics beyond the Standard Model

Main publications: http://people.roma2.infn.it/~dama/web/publ.html

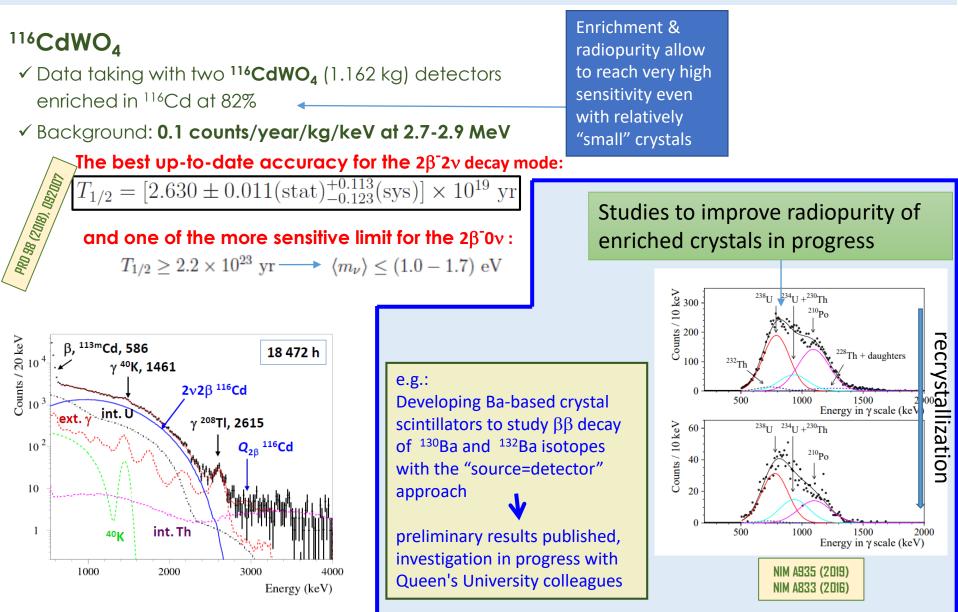
10¹⁷

10¹⁸ 10¹⁹ 10²⁰

10²¹

1022 1023

10¹⁵


101+

10¹³

10" 10¹²

SOME OF MOST RECENT STUDIES

AURORA experiment ...

SOME OF MOST RECENT STUDIES

Dark Matter Model Independent Annual Modulation Data analysed with many different procedures \rightarrow always consistent results Main publications: http://people.roma2.infn.it/~dama/web/publ.html 2-6 keV Energy Threshold = 1 keV 0.1 Residuals (cpd/kg/keV) DAMA/LIBRA_ph1 (1.04 ton×yr DAMA/LIBRA ph2 (1.13 ton×vr) DAMA/NaI (0.29 ton×vi 0.08 Running testing DAMA/LIBRA-phase2 DAMA/LIBRA-phase3 0.06 0.04 0.02 0 -0.02 -0.04 DAMA/LIBRA phase 2 -0.06-0.08 -0.12000 3000 4000 5000 6000 7000 8000 Time (day) DAMA/LIBRA upgrade optimized for the phase2 (fall 2010): replacement of all the PMTs with Data released: higher Q.E. ones from dedicated R&D (+new preamp in fall 2012 and other developments Model-independent analyses Universe 4 (2018) 147 DAMA/LIBRA-phase2 favors the presence of a modulated behavior Nucl. Phys. At. En. 19 (2018) 307 Many corollary model with proper features at 9.5 σ C.L over 6 annual cycles, confirming the arXiv:1907.06405 in press dependent-analyses in press results of previous DAMA/Nal and DAMA/LIBRA-phase1 expts. Developments towards directionality with anisotropic scintillators DAMA/Nal & DAMA/LIBRA-phase1 & DAMA/LIBRA-phase2 favor (seminal papers by DAMA colleagues): the presence of a modulated behavior with proper features at Studying the response of the ZnWO₄ in keV region 12.8 o C.L over 20 independent annual cycles Measurements of the Quenching Factor of **Oxygen Nucleus** DMn wind Eneak (keVee) Erecoil.o (keV) Q_{iii}/Q_i Angle Axis 80° 99.2±2.5 1387 0.0715±0.0018 No modulation above 6 keV L.189 ± 0.047 80° 83.4±2.5 1387 0.0601±0.0018 No modulation in the whole energy spectrum 70° 87.0±2.1 1116 0.0780±0.0019 70° 78.9±3.2 1116 No modulation in the multiple-hits events In press on 60° to be completed 856 No systematics/side-reactions able to mimic the observed effect (i.e. able to account 60° to be completed 856 **EPJA** for the whole observed modulation amplitude and simultaneously satisfy the many Only for DMp candidates able to induce nuclear recon specific requirements of the exploited signature)

SOME OF THE PLANNED ACTIVITIES IN NEXT FUTURE

- Direct Dark Matter investigation:
 - Running DAMA/LIBRA-phase2
 - 4 crystal are in testing for the possible phase3 with new preamplifies and metallic-PMTs
 - New phenomenological studies
 - Further developments for the ADAMO project
- New investigations of several rare processes
- Double beta decay studies in various isotopes, in particular:
 - on ¹¹⁶Cd and ¹⁰⁶Cd with increased sensitivities
 - on Barium isotopes
 - on ¹⁵⁰Nd
 - on Sm, Er, Yb isotopes

R&D developments of (new) crystal scintillators Performances for low-radioactivity experiments Purification techniques of oxide of rare earths ...and more