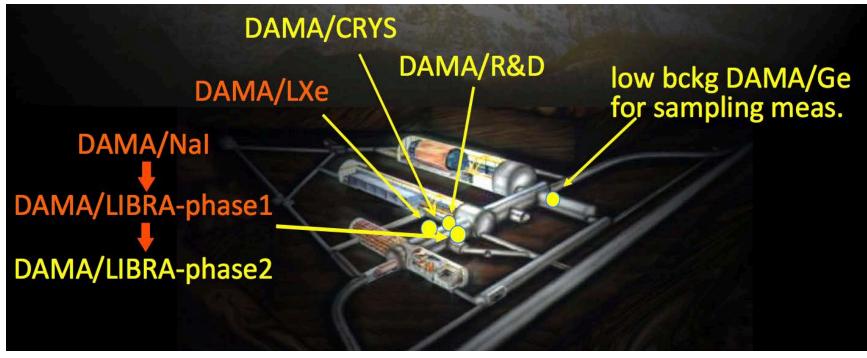
Recent developments and results on ββ decays with crystal scintillators and HP-Ge spectrometry

"104° CONGRESSO NAZIONALE DELLA SOCIETÀ ITALIANA DI FISICA" UNIVERSITÀ DELLA CALABRIA, 17-21/09/2018


Vincenzo Caracciolo INFN-LNGS

DAMA set-ups

an observatory for rare processes @ LNGS

Collaboration:

Roma Tor Vergata, Roma La Sapienza, LNGS, IHEP/Beijing

- + by-products and small scale expts.: INR-Kiev + other institutions
- + neutron meas.: ENEA-Frascati, ENEA-Casaccia
- + in some studies on **BB** decays (DST-MAE & Inter-Univ. project): IIT Kharagpur and Ropar, India

web site: http://people.roma2.infn.it/dama

First or improved results for 2β decays of many isotopes

¹³⁶Ce $Q_{\beta\beta}$ =2378.55 keV; 2 ϵ , $\epsilon\beta^+$, 2 β^+ ; ¹³⁸Ce $Q_{\beta\beta}$ =691 keV; 2 ϵ

- > CeO₂ sample (627 g) in GeCris detector (2299 h) \Rightarrow T_{1/2} limits: 10¹⁷-10¹⁹ yr [Eur. Phys. J. A 53 (2017) 172]
- > CeO₂ sample (732 g) in GeCris detector (1900 h) \Rightarrow T_{1/2} limits: 10¹⁷-10¹⁸ yr [Nucl. Phys. A 930 (2014) 195]
- ➤ CeCl₃ crystal (6.9 g) in DAMA/Ge detec. (1280 h) \Rightarrow T_{1/2} limits: (1÷6)10¹⁵ yr [Nucl. Phys. A 824 (2009) 101]

¹⁰⁶Cd $Q_{\beta\beta}$ =2775.39 keV; 2 ϵ (res 0 ν), $\epsilon\beta^+$, 2 β^+ [Phys. Rev. C 93 (2016) 045502]

▶ ¹⁰⁶CdWO₄ crystal scintillator (216 g) in GeMulti (13085 h) \Rightarrow T_{1/2} limits: 10²⁰-10²¹ yr

⁹⁶Ru Q_{ββ}=2714.51 keV; 2ε (res 0ν), εβ⁺, 2β⁺, ¹⁰⁴Ru Q_{ββ}=1301.2 keV; 2β⁻

- > Purified Ru samples in GeMulti det. (0.56kg×yr) \Rightarrow T_{1/2} limits: 10²⁰-10²¹ yr [Phys. Rev. C 87 (2013) 034607]
- > Ru sample (473 g) in GeCrys detector (158 h) \Rightarrow T_{1/2} limits: 10¹⁸-10¹⁹ yr [Eur. Phys. J. A 42 (2009) 171]

¹⁸⁴Os $Q_{\beta\beta}$ =1453.7 keV; 2 ϵ (res 0 ν), $\epsilon\beta^+$; ¹⁹²Os $Q_{\beta\beta}$ =412.4 keV; 2 β^- [Eur. Phys. J. A 49 (2013) 24]

> Os sample (173 g) in GeCris detector (2741 h) \Rightarrow T_{1/2} limits: 10¹⁶-10¹⁷ yr for ¹⁸⁴Os and 10¹⁹ yr for ¹⁹²Os

¹⁹⁰Pt $Q_{\beta\beta}$ =1383 keV; 2 ϵ (res 0 ν), $\epsilon\beta^+$; ¹⁹⁸Pt $Q_{\beta\beta}$ =1049 keV; 2 β^- [Eur. Phys. J. A 47 (2011) 91]

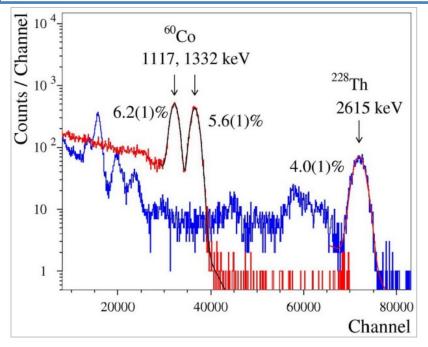
> Pt sample (42.5 g) in GeCris detector (1815 h) \Rightarrow T_{1/2} limits: 10¹⁴-10¹⁶ yr for ¹⁹⁰Pt and 10¹⁸ yr for ¹⁹⁸Pt

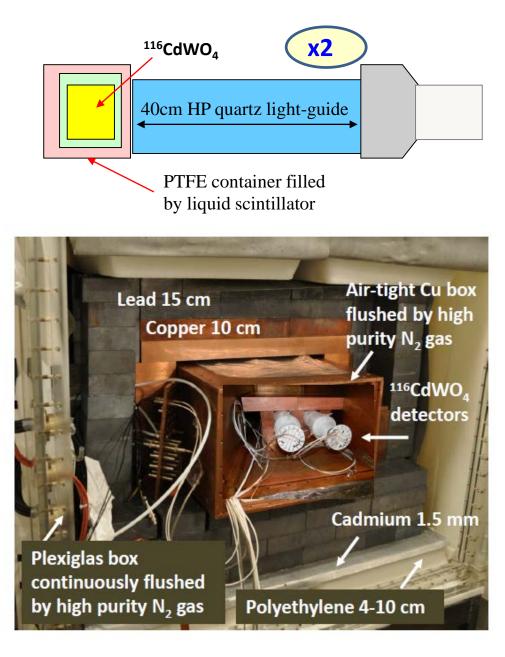
¹⁵⁶Dy $Q_{\beta\beta} = 2005.95 \text{ keV}$; 2 ϵ , $\epsilon\beta^+$; ¹⁵⁸Dy $Q_{\beta\beta} = 282.7 \text{ keV}$; 2 ϵ [Nucl. Phys. A 859 (2011) 126]

> Dy_2O_3 sample (322 g) in DAMA/Ge det. (2512 h) \Rightarrow $T_{1/2}$ limits: 10^{14} - 10^{16} yr

¹⁰⁰Mo $Q_{\beta\beta}$ =3035 keV; 2 β -

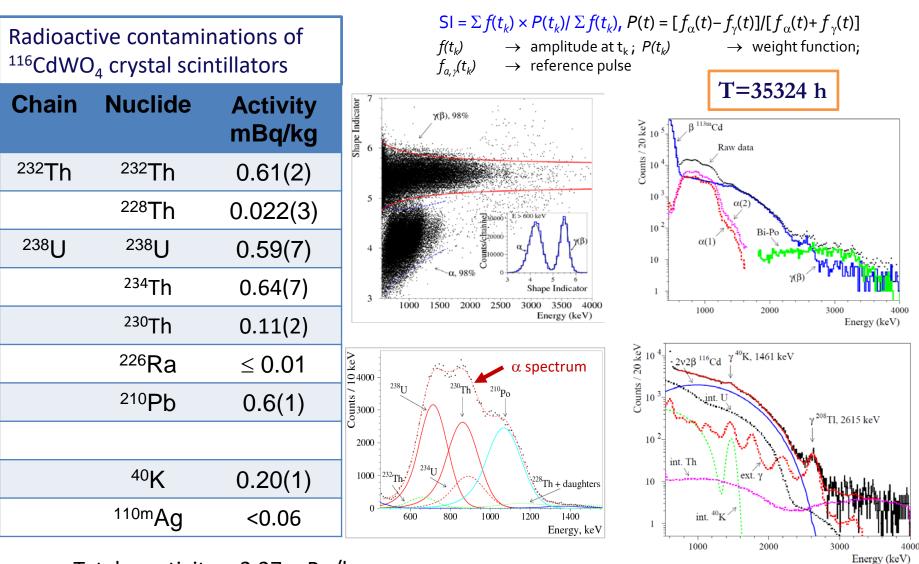
[Nucl. Phys. A 846 (2010) 143]


[▶] ¹⁰⁰MoO₃ sample (1199 g) enriched in ¹⁰⁰Mo at 99.5% in GeMulti detector
⇒ observation of ¹⁰⁰Mo→¹⁰⁰Ru(0₁⁺) decay: $T_{1/2} = 6.9^{+1,0}_{-0.8}(stat) \pm 0.7(syst) \times 10^{20}$ yr


The best experimental sensitivities in the field for 2β decays with positron emission

THE AURORA EXPERIMENT IN THE DAMA/R&D SET-UP

Two enriched ¹¹⁶CdWO₄ crystal scintillators ($Q_{\beta\beta}$ = 2813.49(13) keV) (total mass: 1.162 kg, ¹¹⁶Cd @ 82%)


- ✓ Started in 2011
- ✓ Upgrade March 2014
- ✓ Total live time: 35324 h
- Background level at 2.7-2.9 MeV: 0.07 counts/keV/kg/yr

Background identification: fit and results

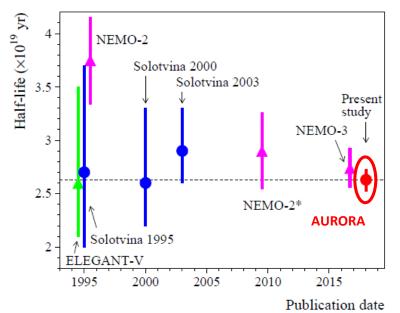
Event-by-event DAQ based on a 1 GS/s $\,$ 8 bit transient digitizer (operated at 50 MS/s) records the pulse shape over a time window of 100 μs from the $^{116}CdWO_4$ detectors

Total α activity = 2.27 mBq/kg

Result for two neutrino double beta decay of ¹¹⁶Cd

Conditions of the Fit:

- Variation of bounds for radioactive contaminations
- Model of background
- Interval of fit
- Quenching for β (non prop. light response) [1,2]

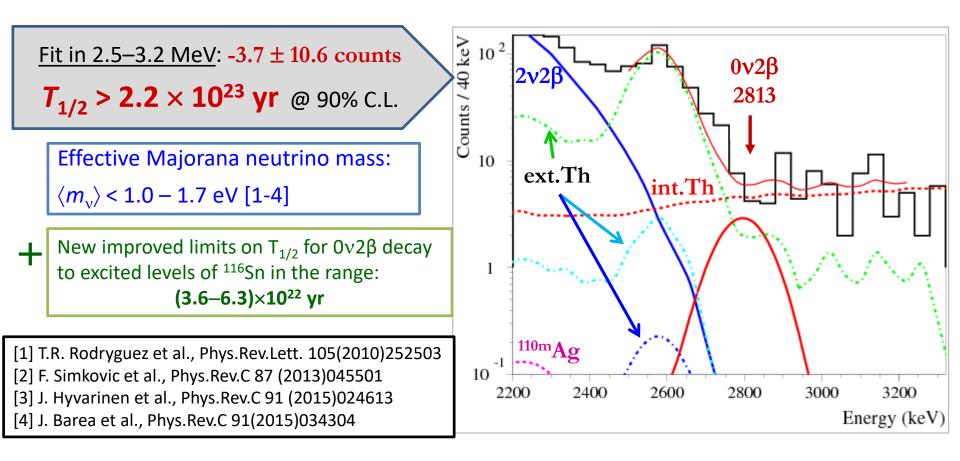

[1] PRC 76(2007)064603 [2] NIMA 696 (2012) 144

Signal to bkg ratio: 2.6 in [1.1–2.8] MeV

S	Source	SE%
Systematic errors	Rad. contamination of ¹¹⁶ CdWO ₄ crystals	65
	BG models, MC, QF	15
	PSD efficiency	10
	Interval of the fit	7
	Number of ¹¹⁶ Cd nuclei	3

 $T_{1/2} = [2.63^{+0.11}_{-0.12}(sys)] \times 10^{19} \,\mathrm{yr}$ (the

(the most accurate value up to date)

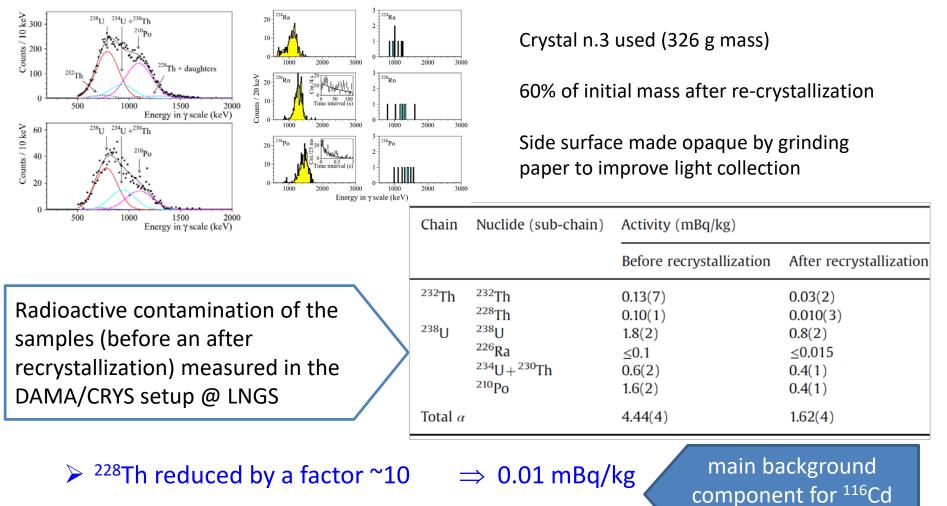

ELEGANT: J. Phys. Soc. Japan 64(1995)339 Solotvina 1995: Phys. Lett. B 344(1995)72 NEMO-2: Z. Phys. C 72(1996)239 Solotvina (2000): PRC 62(2000)045501 Solotvina (2003): PRC 68(2003)035501 NEMO-2* (recalc.): PRC 81(2010)035501 NEMO-3: PRD 95(2017)012007

$T_{1/2}$ limit on $0\nu2\beta$ decay of ^{116}Cd

Background reduction (~1.5) for $0\nu 2\beta$ decay by excluding events from:

²¹²Bi $[Q_{\alpha}$ =6207 keV, B.R. ~36%] \rightarrow ²¹²Po $[Q_{\beta}$ =8954 keV, T_{1/2} = 299 ns] \rightarrow ²⁰⁸Pb

⇒ background rate in 2.7-2.9 MeV: 0.07 (counts/keV/kg/yr)



Improvement of radiopurity of ¹¹⁶CdWO₄ by <u>recrystallization</u>

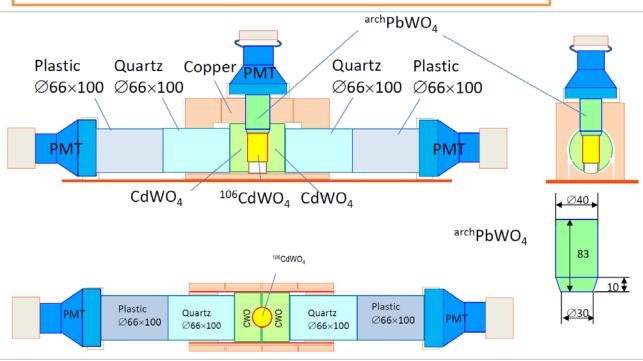
A.S. Barabash et al., Nucl. Instr. Meth. A 833(2016)77

 $0\nu 2\beta$ decay

Re-crystallized by the low-thermal-gradient Czochralski technique in a platinum crucible

 $\succ \alpha$ activity reduced by a factor ~3 \Rightarrow 1.6 mBq/kg

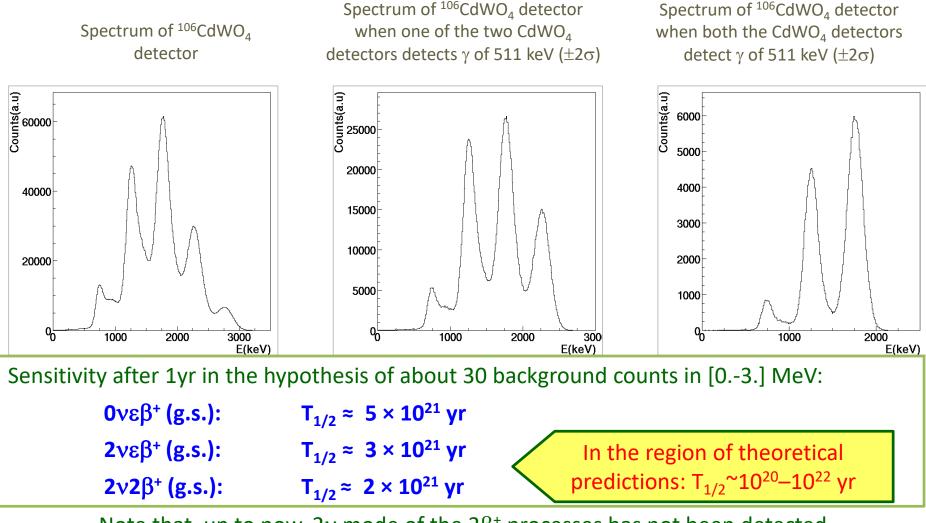
 \Rightarrow Strong segregation of the radioactive elements in the CdWO₄ crystals growing process


¹⁰⁶CdWO₄ experiment in DAMA/CRYS set-up: <u>third phase</u>

- I) ¹⁰⁶CdWO₄ in (anti)coincidence with two large CdWO₄ scintillators mounted in DAMA/CRYS set-up @ LNGS (Q=2775.39(10)keV, δ_{nat}=1.25(6)%, δ=66% enriched) Mass: 216 g, 66.4% enrichment in ¹⁰⁶Cd
- 2) High efficiency
- 3) Experiment in data taking since May 2016

1st exp: single crystal in DAMA/R&D: PRC85(2012)044610

2nd exp: coincidence with <u>4 HP-Ge:</u> PRC93(2016)045502



ESTIMATION OF SENSITIVITY

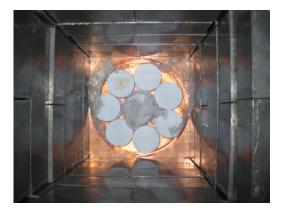
Expected signal for ${}^{106}Cd \ 0\nu 2\beta(0^+ \rightarrow 0^+)$:

Note that, up to now, 2v mode of the $2\beta^+$ processes has not been detected unambiguously: there are only indications for ¹³⁰Ba and ⁷⁸Kr

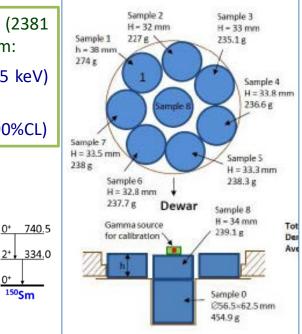
Running and future experiments on HP-Ge

0+ 8×10¹⁸v <u>(1-) 2</u>.68 h

150Nd


150Pm

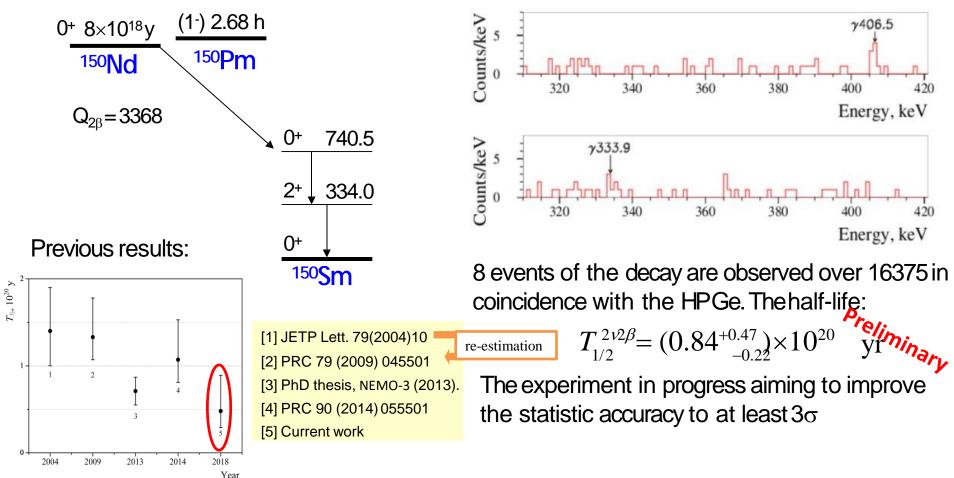
0+


150Sm

Experiment running since February 2015 with deeply purified Nd₂O₃ sample (2381 g) in GeMulti detector to investigate 2 β decay of ¹⁵⁰Nd to excited levels of ¹⁵⁰Sm:

- \Rightarrow Background rate in the region of expected peaks (334.0 keV and 406.5 keV) \approx 2 counts/keV/d
- \Rightarrow Expected T_{1/2} sensitivity after 500 days of measurements: 1.3×10²⁰ yr (90%CL)

			Q _{2β} =	3368		
Improvement of Nd_2O_3 radioactive contamination						
	Contamination	Before [1]	Present			
	⁴⁰ K	46	< 4			
	²¹⁴ Bi (²²⁶ Ra)	1.1	<0.4			
	²²⁸ Ac (²²⁸ Ra)	0.9	<0.4			



New experiment to search for 2β of osmium (and α decay of osmium) to excited level of daughter nuclei) in progress with BEGe detector:

 \Rightarrow Detection efficiency significantly improved by cutting the osmium roads into thin (0.8-1 mm) plates and by using the **BEGe detector**

J

An experiment with highly purified Nd_2O_3 source (2.381 kg) in the GeMulti (4 HPGe ~220 cm³ each) detector of the STELLA facility

First search for 2ε and $\varepsilon\beta^+$ decay of ¹⁶²Er and search for $2\beta^-$ decay of ¹⁷⁰Er to the excited levels of daughter nuclei has been realized with a highly purified erbium oxide samples are published (J.P.G: Nucl. Part. Phys. 45 (2018) 095101): <u>new limits at the level of 10¹⁵-10¹⁸ yr for 2ε , $\varepsilon\beta^+$, $2\beta^-$ decays.</u>

Running and Some of the future Experiments/R&D

- 1. An experiment to search for 2β decay of ¹¹⁶Cd to excited levels of ¹¹⁶Sn is in preparation by using a recrystallized highly radiopure ¹¹⁶CdWO₄ crystal scintillator in coincidence with external gamma counters (HP Ge, CdWO4) is in preparation.
- 2. The experiment and data analysis to search for 2β processes in ¹⁰⁶Cd with enriched ¹⁰⁶CdWO₄ crystal scintillator in CC with two large volume CdWO₄ in close geometry is in progress. An R&D of improved PbWO₄ light-guide from highly purified archaeological lead is in progress.
- 3. The experiment to search for 2β decay of ¹⁵⁰Nd to the excited level of is in progress, the data analysis and a paper preparation about preliminary result of the experiment is published.
- 4. The experiment to search for alpha decay of ¹⁸⁴Os and ¹⁸⁶Os to excited levels of daughter nuclei is in progress to improve the statistic.
- 5. First search for 2ϵ and $\epsilon\beta^+$ decay of ¹⁴⁴Sm and ¹⁶⁸Yb and search for $2\beta^-$ decay of ¹⁵⁴Sm and ¹⁷⁶Yb to the excited levels of daughter nuclei has been realized with a highly purified ytterbium and samarium oxide samples. Data analysis and paper are in preparation.
- 6. R&D of radiopure high quality ZnWO₄ also for dark matter directionality investigations: measurements of four samples (after one and two crystallizations) is going, the data analysis, R&D of radiopure WO₃ and 2nd crystallization are in progress.
- 7. Data analysis of an experiment aiming at accurate measurement of the ²¹²Po half-life with the help of thorium loaded liquid scintillator is in progress.
- 8. R&D of radiopure $Gd_2SiO_5(Ce)$ crystal scintillators to search for 2 β decay of ¹⁵²Gd and ¹⁶⁰Gd is in progress.
- 9. R&D of radiopure $Srl_2(Eu)$ crystal scintillators to search for 2β decay of ⁸⁴Sr is in progress. Thank you for the attention