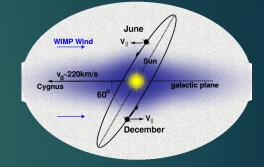
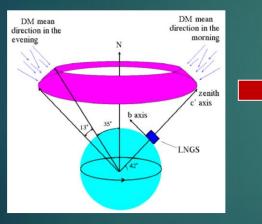
DAMA collaboration & INR-Kiev


Rivelatori a risposta anisotropa ZnWO₄ per l'investigazione su particelle di Materia Oscura con la tecnica della direzionalità


SIF, 101^a Congresso Nazionale Roma, 25 settembre 2015 Vincenzo Caracciolo Laboratori Nazionali del Gran Sasso (INFN)

The directionality approach for DM candidates inducing just nuclear recoils

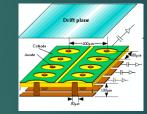
Based on the study of the correlation between the Earth motion in the galactic rest frame and the arrival direction of Dark Matter (DM) particles inducing just nuclear recoils

The dynamics of the rotation of the Milky Way galactic disc through the halo of DM causes the Earth to experience a wind of DM particles apparently flowing along a direction opposite to that of solar motion relative to the DM halo

... because of the Earth's rotation around its axis, the DM particles average direction with respect to an observer fixed on the Earth changes during the sidereal day

The **direction of the induced nuclear recoils** can offer a way for pointing out the presence of that kind of candidate particles; in fact the nuclear recoils are expected to be **correlated** with their **impinging direction**,

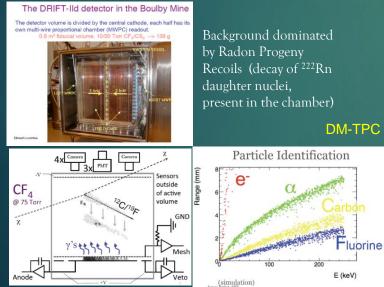
Directionality sensitive detectors: TPC


• Detection of the tracks' directions

 \Rightarrow Low Pressure **Time Projection Chamber** might be suitable; in fact the range of recoiling nuclei is of the order of mm (while it is $\sim \mu m$ in solid detectors)

In order to reach a significant sensitivity, a realistic TPC experiment needs e.g.:

- 1. extreme operational stability
- 2. high radiopurity
- 3. extremely large detector size
- 4. great spatial resolution
- 5. low energy threshold


Not yet competitive sensitivity

NEWAGE

μ-PIC(Micro Pixel Chamber) is a two dimensional position sensitive gaseous detector

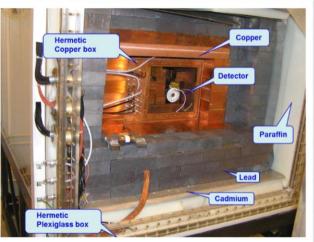
DRIFT-IId

		Current	Plan
	Detection Volume	30 × 30 × 31 cm ³	>1m ³
	Gas	CF ₄ 152Torr	CF ₄ 30 Torr
	Energy threshold	100keV	35keV
	Energy resolution(@ threshold)	70%(FWHM)	50%(FWHM)
	Gamma-ray rejection(@threshold)	8×10-6	1 × 10 ⁻⁷
1	Angular resolution (@ threshold)	55° (RMS)	30° (RMS)

- The **"4--Shooter"** 18L (6.6 gm) TPC 4xCCD, Sea-level@MIT
- moving to WIPP
- Cubic meter funded, design underway

Internal radioactive BG restricts the sensitivities We are working on to reduce the backgrounds!

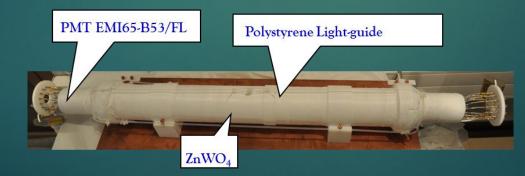
Directionality sensitive detectors overcoming the track measurement difficulties: anisotropic scintillators


- Study of the variation in the response of anisotropic scintillation detectors during sidereal day. In fact, the <u>light output</u> and the <u>pulse shape</u> (complementary approaches) of these detectors depend on the direction of the impinging particles with respect to the crystal axes
 - The use of anisotropic scintillators to study the directionality signature was proposed for the first time in ref. [P. Belli et al., Il Nuovo Cim. C 15 (1992) 475], where the case of anthracene detector was preliminarily analysed, and revisited in ref. [R. Bernabei et al., Eur. Phys. J. C 28 (2003) 203]. Some preliminary activities have been carried out [N.J.C. Spooner et al, IDM1997 Workshop; Y. Shimizu et al., NIMA496(2003)347]
 - In the comparison with the anthracene the ZnWO₄
 anisotropic scintillator offers a higher atomic weight and the possibility to realize crystals with masses of some kg, with high level of radio-purity, with threshold at few keV feasible (Eur. Phys. J. C 73 (2013) 2276)

Low background ZnWO₄ crystal scintillators

- DAMA in collaboration with INR-Kiev group have developed low background ZnWO₄ crystal scintillators to search 2β decay processes
- Low background measurements performed in the DAMA/RD set-up at LNGS

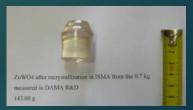
DAMA/RD set-up


- Air-tight Cu box continuously flushed with HP N₂
- 10 cm of high purity Cu
- 15 cm of low radioactive lead
- 1.5 mm of cadmium
- 4/10 cm polyethylene/paraffin
- The whole shield closed inside a Plexiglas box also continuously flushed with HP $\rm N_2$

ZnWO₄ crystal scintillators

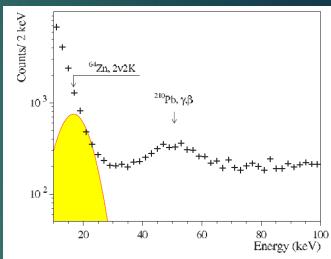
- Low background ZnWO₄ crystal scintillators with large volume and good scintillation properties realized
- Various detectors with mass **0.1-0.7 kg** realized by exploiting different materials and techniques
- Detectors installed in a cavity (filled up with high-pure silicon oil) ϕ 47 x 59 mm in central part of a polystyrene light-guide 66 mm in diameter and 312 mm in length. The light-guides was faced by 2 lowbackground PMTs

• Main aim of the measurements was the study of the properties of $ZnWO_4$ and the search for 2β processes in Zinc and Tungsten isotopes.



PLB658(2008)193, NPA826(2009)256 NIMA626-627(2011)31, IP38(2011)115107

JI JO(2011)11J		
Crystal	Size (mm)	Mass (g)
$\operatorname{scintillator}$		
ZWO-1	$20 \times 19 \times 40$	117
ZWO-2	$\oslash 44 \times 55$	699
ZWO-2a	$\oslash 44 \times 14$	168

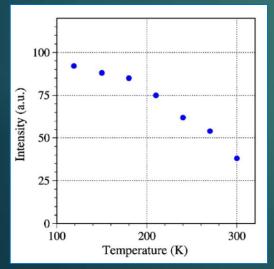


Achieved results on $\beta\beta$ decay modes in Zn and W isotopes with (0.1 – 0.7 kg) low background ZnWO₄

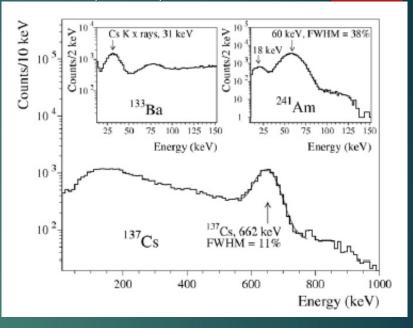
Obtained limits on the $\beta\beta$ decay modes of ⁶⁴Zn, ⁷⁰Zn, ¹⁸⁰W and ¹⁸⁶W: T_{1/2} ~10¹⁸ - 10²¹ yr.

• up to now only 5 nuclides (${}^{40}Ca$, ${}^{78}Kr$, ${}^{112}Sn$, ${}^{120}Te$ and ${}^{106}Cd$) over 34 candidates to 2 ϵ , $\epsilon\beta^+$, $2\beta^+$ processes have been studied at this level of sensitivity in direct experiments

J. Phys. G: Nucl. Part. Phys. 38 (2011) 115107


- 1) A possible positive hint of the $(2\nu+0\nu)EC\beta^+$ decay in ⁶⁴Zn with $T_{1/2} = (1.1 \pm 0.9) \times 10^{19}$ yr [I. Bikit et al., Appl. Radiat. Isot. 46(1995)455] excluded
- 2) 0v2EC in ¹⁸⁰W is of particular interest due to the possibility of the resonant process;
- 3) the rare α decay of the ¹⁸⁰W with $T_{1/2} = (1.3^{+0.6}_{-0.5}) \times 10^{18}$ yr observed and new limit on the $T_{1/2}$ of the α transition of the ¹⁸³W to the metastable level 1/2⁻ at 375 keV of ¹⁷⁹Hf has been set: $T_{1/2} > 6.7 \times 10^{20}$ yr.

> Main characteristics


Density (g/cm^3)	7.87
Melting point (°C)	1200
Structural type	Wolframite
Cleavage plane	Marked (010)
Hardness (Mohs)	4-4.5
Wavelength of emission maximum (nm)	480
Refractive index	2.1–2.2
Effective average decay time (µs)	24

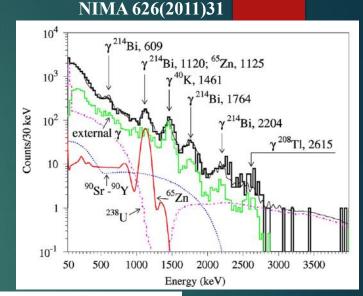
Light yield and energy threshold

An energy threshold of 10 keV has been used in a past experiment not optimized for the low energy region

FWHM in the range of (8.8–14.6)% @662 keV

A competitive experiment for the DM investigation needs a low energy threshold, that is:

- Suitable light output (photoelectron/keV)
- Efficient reduction of the residual noise near threshold

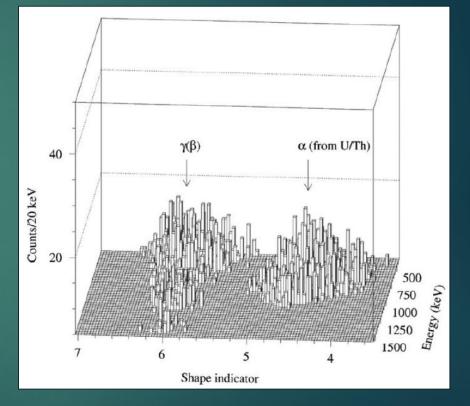

Improvement of the energy threshold can be obtained e.g. by:

- ✓ coupling 2 PMTs in coincidence at single ph.e. level;
- ✓ placing the crystal in silicone oil (light collection improvement ~40%);
- \checkmark decreasing the operational temperature of the ZnWO₄ scintillator;
- ✓ or with a combination of the previous points

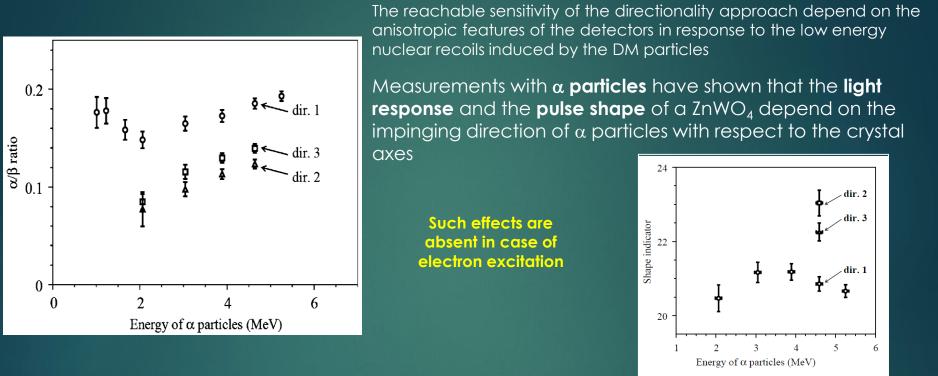
➢ Radiopurity

The measured radioactive contamination of ZnWO₄ approaches that of specially developed low background Nal(Tl):

- ~ 0.5 ppt for 232 Th;
- ~ 0.2 ppt for ²³⁸U;
- 0.02 mBq/kg for ⁴⁰K;
- total α activity of 0.18 mBq/kg



Run	Crystal	Size mass producer	<i>t</i> (h)	FWHM (%)	Background counting rate in counts/(day keV kg) in the energy intervals (MeV)		
					0.2-0.4	0.8-1.0	2.0-2.9
1	ZWO-1	20 × 19 × 40 mm 117 g ISMA ^a	2906	12.6	1.71(2)	0.25(1)	0.0072(7)
2	ZW0-2	∅ 44 × 55 mm 699 g ISMA	2130	14.6	1.07(1)	0.149(3)	0.0072(4)
3	ZW0-3	Ø 27 × 33 mm 141 g ISMA (re-crystallization of ZWO-2)	994	18.2	1.54(4)	0.208(13)	0.0049(10)
4	ZW0-4	Ø41 × 27 mm	834	14.2	2.38(4)	0.464(17)	0.0112(12)
5		239 g NIIC ^b	4305	13.3	1.06(1)	0.418(7)	0.0049(4)


Developments is still ongoing: \Rightarrow future ZnWO₄ crystals with higher radiopurity expected

> Pulse shape analysis

The dependence of the pulse shapes on the type of irradiation in the ZnWO₄ scintillator allows one to discriminate $\beta(\gamma)$ events from those induced by α particles and to identify the α background

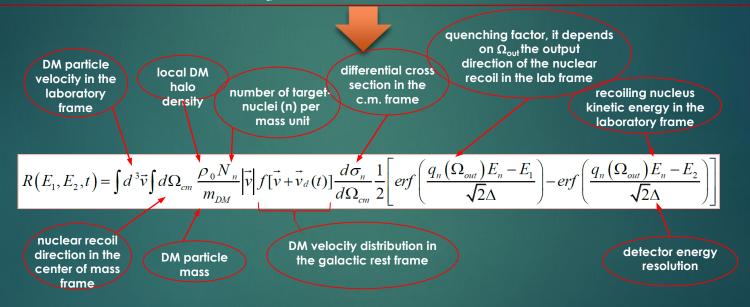
Anisotropic features in ZnWO₄

These anisotropic effects are ascribed to preferred directions of the excitons' propagation in the crystal lattice affecting the dynamics of the scintillation mechanism

Similar effect is expected in the case of low energy nuclear recoils \Rightarrow Dedicated measurements are in preparation

Both the anisotropic features of the ZnWO₄ detectors can provide two independent ways to exploit the directionality approach

Summarizing


- ✓ Large mass crystals
- ✓ High level of radiopurity
- ✓ Suitable light output
- ✓ keV energy threshold
- \checkmark Pulse shape discrimination
- ✓ Sensitivity to different DM masses (with Zn, W and O)
- \checkmark High stability of the running conditions
- \checkmark Suitable anisotropic features

An example of the signal rate in given scenario

Eur. Phys. J. C 73 (2013) 2276

As a consequence of the **light response anisotropy**, recoil nuclei induced by the considered DM candidates could be discriminated from the background thanks to the expected variation of their low energy distribution along the day

The expected signal counting rate in the energy window (E1,E2) is a function of the time t (i.e. of Type equation here. $v_d(t)$ the **detector velocity in the galactic rest frame**)

NB: Many quantities are model dependent and a model framework has to be fixed In this example, for simplicity, a set of assumptions and of values have been fixed, without considering the effect of the existing uncertainties on each one of them

... some about a model framework

Model description:

- a simple spherical isothermal DM halo model with Maxwellian velocity distribution, 220 km/s local velocity, 0.3 GeV/cm³ local density (ρ_0) and 650 km/s escape velocity;
- DM with dominant spin-independent coupling and the following scaling law (DM-nucleus elastic cross section, σ_n , in terms of the DM elastic cross section on a nucleon, σ_p):

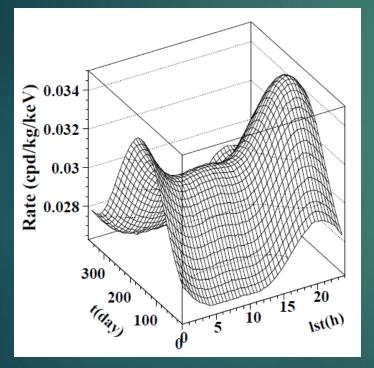
$$\sigma_n = \sigma_p \left(\frac{M_n^{red}}{M_p^{red}} \cdot A \right)^2 = \sigma_p \left(\frac{m_p + m_{DM}}{m_n + m_{DM}} \cdot \frac{m_n}{m_p} \cdot A \right)^2$$

• a simple exponential form factor:

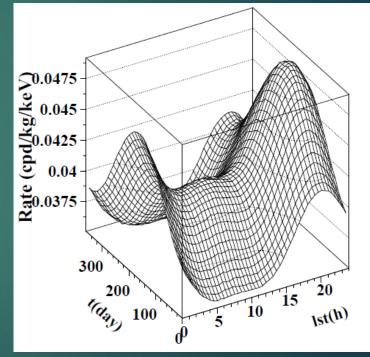
$$F_n^2(E_n) = e^{-\frac{E_n}{E_0}} \qquad E_0 = \frac{3(\hbar c)^2}{2m_n r_o^2} \qquad r_0 = 0.3 + 0.91 \sqrt[3]{m_n}$$

Quenching factor:

$$q_n(\Omega_{out}) = q_{n,x} \sin^2 \gamma \cos^2 \phi + q_{n,y} \sin^2 \gamma \sin^2 \phi + q_{n,z} \cos^2 \gamma$$


where $q_{n,i}$ is the quenching factor value for a given nucleus, n, with respect to the *i*-th axis of the anisotropic crystal and $\Omega_{out} = (\gamma, \phi)$ is the output direction of the nuclear recoil in the laboratory frame $q_{n,i}$ have been calculated following ref. [V.I. Tretyak, Astropart. Phys. 33 (2010) 40] considering the data of the anisotropy to α particles of the ZnWO₄ crystal

Energy resolution: $FWHM = 2.4\sqrt{E(keV)}$


Example of the expected signal in a simplified model

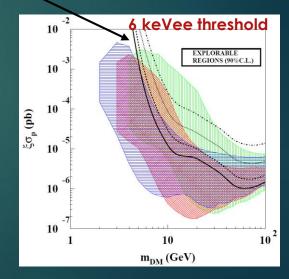
Expected signal rate as a function of sidereal time and days of the year

[2-3] keV σ_p=5×10⁻⁵ pb m_{DM}= 10 GeV

[6-7] keV σ_p=5×10⁻⁵ pb m_{DM}= 100 GeV

Eur. Phys. J. C 73 (2013) 2276

Model dependent comparisons; example of reachable sensitivity in a scenario considered in EPJC73(2013)2276


Considering an experiment with:

- 200 kg of ZnWO₄;
- 5 years of data taking.

The reachable sensitivity has been calculated considering four possible time independent **background levels** in the low energy region:

- ➢ 10⁻⁴ cpd/kg/keV _____
- 10⁻³ cpd/kg/keV _ _ _ _ _ _
- 10⁻² cpd/kg/keV
- ➢ 0.1 cpd/kg/keV · · ·

Black lines are the <u>sensitivities</u> <u>reachable</u> with four possible background levels in the low energy region in a given scenario Eur. Phys. J. C 73 (2013) 2276 10^{-2} 2 keVee threshold 10^{-3} (2) keVee threshold

The directionality approach can reach in the given scenario a sensitivity to the cross section at level of $10^{-5} - 10^{-7}$ pb, depending on the particle mass

For comparison, there are also shown (green, red and blue) allowed regions obtained with a corollary analysis of the 9.3 σ C.L. DAMA/Nal + DAMA/LIBRA model independent result in terms of scenarios for the DM candidates considered here Phys. Rev. D 84, 055014 (2011)

Conclusions

- Anisotropic ZnWO₄ detectors is a very promising detector to investigate the directionality for DM particle inducing recoils
- These detectors could permit to reach in given scenarios sensitivity to the cross section at level of 10⁻⁵ – 10⁻⁷ pb, depending on the particle mass
- Such an experiment can investigate with the new approach the presence of DM candidates induce just nuclear recoils, providing complementary information on their nature and interaction
- It would represent a first realistic attempt to investigate the directionality approach